
Am. J. Hum. Genet. 67:244–248, 2000

244

Report

Testing Linkage Disequilibrium in Sibships
Kimberly D. Siegmund, Bryan Langholz, Peter Kraft, Duncan C. Thomas
Department of Preventive Medicine, University of Southern California, Los Angeles

We describe the use of multivariate regression for testing allelic association in the presence of linkage, using marker
genotype data from sibships. The test is valid, provided that the correct mean structure is modeled but does not
require the correlation structure within families to be specified. The test can be implemented using standard statistical
software such as the SAS programming language. In a simulation study, we evaluated this new test in comparison
with one from a standard, matched–case-control analysis. First, we noted that the genetic effect needed to be quite
extreme before residual familial correlation due to linkage led to false inference using the standard, matched-pair
analysis. Second, we showed that under examples of extreme residual familial correlation, the new test had the
correct test size. Third, we found that the test was more powerful than the sibship disequilibrium test of Horvath
and Laird. Finally, we concluded that although the standard analysis may lead to correct inference for practical
purposes, the new test is valid, even under extreme residual familial correlation and with no cost in power at the
causal locus.

Recently, many articles have discussed methods for the
detection of linkage disequilibrium in families for the
fine mapping of disease genes. The approaches combine
the information from linkage of a trait locus and marker
locus in families and the association between marker
alleles and trait alleles in the population. Since these
methods depend on within-family associations between
the marker locus and the disease locus, they are robust
to confounding, because of population admixture.

Family designs proposed for studying linkage dise-
quilibrium include case-parent trios and case–sib-control
pairs. Case-parent trios are useful for the study of early-
onset diseases for which the parents are still available
for genotyping, but alternate designs are necessary for
the study of late-onset diseases. This recognition led to
recommendations for the case–sib-control design (Curtis
1997; Schaid and Rowland 1998; Spielman and Ewens
1998). Conditional logistic regression, the standard ep-
idemiologic method for the analysis of matched case-
control data, was proposed for the analysis of the marker
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genotypes of the case–sib-control pairs. The sib trans-
mission/disequilibrium test (S-TDT) was proposed in-
dependently for testing a single diallelic locus. Schaid
and Rowland (1998) noted that the S-TDT was equiv-
alent to a score test from the conditional likelihood hav-
ing log-additive effects of the marker alleles.

Although conditional logistic regression can be ap-
plied to sibships of arbitrary size for testing linkage in
the presence of allelic disequilibrium, it is not always
valid for testing disequilibrium in the presence of link-
age. The conditional likelihood assumes that disease
status in sibships is conditionally independent, given the
sib marker data. This assumption is violated when there
is linkage between a disease and a marker locus, since
sibs with the same disease status will tend to share the
same marker alleles. As a result, the variance for the
score test from the usual conditional likelihood is un-
derestimated, and the test for association is liberal.

Recently, several authors have proposed new methods
of testing for association in the presence of linkage (Cur-
tis 1997; Horvath and Laird 1998). Curtis (1997) sug-
gested reducing large sibships to a single case-control
pair and analyzing them using standard conditional lo-
gistic regression. He proposed selecting the sib control
with the maximally different marker genotype to that
of the case. When more than one sib was affected, he
suggested selecting an affected sib at random. Although
this method resulted in a valid test statistic, many data
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were not used. In response, Horvath and Laird (1998)
developed a method that would use the data from all
siblings. Their approach reduced the marker genotype
data in sibships using a sign test of whether the average
number of a specific marker allele carried by the affected
sibs differed from the average number carried by the
unaffected sibs. Again, the data reduction method may
have resulted in loss of information.

We propose to apply multivariate regression for cor-
related outcome data to the analysis of marker data in
sibships. We will test for allelic association using a Wald
test with a robust variance estimate that takes into ac-
count the correlation in outcome from the multivariate
(clustered) data. This has the benefit of using the marker
data on all sibs and does not require that the exact cor-
relation structure be specified. The method is analogous
to the use of generalized estimating equations for the
conditional logistic likelihood and can be applied using
any software package that will allow one to compute
the leverage residuals under the discrete logistic model.
We describe the likelihood and the procedure for data
analysis using the SAS programming language (SAS
Institute).

The sibships contributing to the likelihood are those
containing at least one affected and one unaffected sib-
ling. Let ,…,I denote sibship, let Di denote the seti = 1
of affected siblings in sibship i, and let ni denote the
number of affected sibs. We let Mi denote the marker
genotypes in the ith sibship and Zi their coding. For the
purpose of illustration, suppose we have a single diallelic
marker locus. For individuals carrying 0, 1, or 2 copies
of the variant allele, Z takes on the values 0, �, or 1,
respectively. The parameter � allows us to model the
dominance effect (� = 1 for dominant, � = 0 for re-
cessive, and � = ½ for [log-] additive). Then, the con-
ditional likelihood is

′I I ( )� exp Z bj�D iji

( )L b =� Pr (DFn ,Z ) = � ,i i i ′( )i=1 i=1 � � exp Z bj�S ij
S�Ci

where Ci denotes the set of all possible subsets for which
ni-affected sibs are sampled from the ith sibship and b

the log-odds ratio of disease in subjects carrying two
copies of the variant allele relative to subjects carrying
zero copies. A marker locus with m marker alleles can
be studied by creating m-1 independent variables. In that
case, b is a vector of m-1 regression coefficients. More
general models can be considered by creating dummy
variables for each unique genotype.

We propose to fit the conditional logistic regression
model in SAS using the procedure PHREG. Using dfbeta
residuals from this fit, we compute the robust variance
estimate described by Therneau and Hamilton (1997).
This robust estimate approximates a grouped jackknife

estimate of variance where the groups are defined by the
independent sibships. It accounts for the correlation in
disease status among sibs sharing the same marker al-
leles, which arises under linkage between the marker and
the trait locus. Using this robust variance estimate, we
compute a robust Wald test that is valid for testing as-
sociation in the presence of linkage. The variable defi-
nitions and SAS code are given in the Appendix.

We performed a limited simulation study to evaluate
the properties of our new test with regard to test size
and power. A preferred test would account for residual
correlation due to linkage when correlation is present
and would show no cost in power when such correlation
is not present. These two situations can be distinguished
as follows. Suppose we have two distinct loci and we
are testing whether alleles at a measured marker locus
are in linkage disequilibrium with alleles at a nearby
unmeasured disease susceptibility locus (scenario 1). In
this case, we have a marker locus that has no direct effect
on disease ( ) but that is linked to a trait locus (re-b = 0
combination fraction [v] ! ½). The trait locus has a dis-
ease susceptibility allele with population frequency be-
tween 0 and 1 and an effect on disease measured by bg

(bg ( 0). We test the null hypothesis of linkage equilib-
rium between the marker and trait alleles (disequilibrium
measure [d] = 0) versus the alternative that the alleles
are in disequilibrium. Using the conditional likelihood,
this is equivalent to testing H0: b = 0 (d = 0, bg ( 0, v

! ½) vs. HA: b ( 0 (d ( 0, bg ( 0, v ! ½), where linkage
disequilibrium will result in a nonzero effect at the linked
marker locus. For this scenario, residual familial cor-
relation, resulting from linkage of the marker locus and
the trait locus, may necessitate the use of a robust var-
iance estimator for making valid inference. On the other
hand, suppose we have a single causal locus and the
marker allele is the actual disease susceptibility allele
(scenario 2). For this case, the associated marker allele
has the same population frequency as the trait suscep-
tibility allele and the two alleles are in maximum dise-
quilibrium with each other. Now we test the null hy-
pothesis that the susceptibility allele has no effect versus
the alternative that it does, H0: b = bg = 0 vs. HA: b =
bg ( 0. In this situation, there is no residual correlation
within families because of linkage, and the standard
Wald test is valid. In general, we will not know in ad-
vance which is the true state of nature, so we would like
a test that is valid regardless of the presence of residual
correlation and that has no penalty in power under (con-
ditional) independence.

In our simulation study, we address two questions of
primary importance: (1) when does linkage of a trait
and marker locus noticeably affect the test size for dis-
equilibrium at the marker locus using the standard con-
ditional logistic likelihood, and (2) does the use of the
robust variance estimator fix it and at what cost? Since
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Table 1

Estimated Significance Level (%) of the Standard Score Test, for
the Nominal Rate of 5% (500 Sibships Having at Least One Case
and One Control; 10,000 Replications)

GOR AND

TRAIT-ALLELE

FREQUENCY

PAF
(%)

SIGNIFICANCE LEVEL AT v =

.00 .05 .10 .20 .50

Sibship size 3:
2:

.1 7 5.14 4.90 5.29 5.20 4.92

.3 19 5.39 5.08 4.73 5.15 5.22

.5 29 5.11 5.59** 4.89 5.54** 5.34
20:

.1 36 5.67** 5.06 4.98 5.21 5.03

.3 70 5.70** 5.80** 5.35 5.30 4.73

.5 84 5.54** 5.67** 5.14 5.04 5.14
Sibship size 4:

2:
.1 7 5.13 4.49 4.72 4.68 5.09
.3 19 5.83* 5.06 5.24 5.23 4.68
.5 29 5.35 5.39 4.96 5.25 4.91

20:
.1 36 5.60** 6.06* 5.38 5.20 5.07
.3 70 5.93* 5.37 5.82* 6.17* 4.72
.5 84 5.53** 5.49** 5.26 5.55** 5.14

NOTE.—Marker allele 1 frequency 50%; population disease prev-
alence = 10%
* P ! .001.
** .001 � P ! .05.

Table 2

Estimated Significance Level (%) of the Standard Score Test, for
the Nominal Rate of 5% (500 Sibships Having at Least Two Cases
and One Control; 10,000 Replications)

GOR AND

TRAIT-ALLELE

FREQUENCY

PAF
(%)

SIGNIFICANCE LEVEL AT v =

.00 .05 .10 .20 .50

Sibship size 3:
2:

.1 7 5.92* 5.68** 5.23 5.18 4.80

.3 19 5.45** 5.15 5.00 5.51** 5.07

.5 29 5.12 5.56** 5.07 5.43 5.22
20:

.1 36 5.73** 6.01* 5.87* 5.38 5.34

.3 70 6.94* 6.96* 5.72** 5.77** 5.05

.5 84 6.47* 6.40* 5.69** 5.76** 4.77
Sibship size 4:

2:
.1 7 4.99 4.80 5.24 5.48** 4.95
.3 19 5.08 4.99 4.82 4.72 5.56**
.5 29 5.51** 4.72 5.21 5.32 5.41

20:
.1 36 7.09* 6.28* 6.20* 5.25 5.41
.3 70 7.15* 6.70* 5.99* 5.91** 5.39
.5 84 6.92* 6.57* 6.15* 5.43 5.60**

NOTE.—See footnotes to table 1.

it is computationally infeasible to address the first ques-
tion through an extensive evaluation in SAS, we inves-
tigate the standard Score test using the programming
language C��. Then, for a subset of the situations in
which this test does not have the correct size, the stan-
dard and robust Wald tests are computed using SAS.
Finally, power is estimated at the actual trait locus for
the two Wald tests and the sibship disequilibrium test
(SDT) (Horvath and Laird 1998). As discussed above,
the standard Wald test is valid for this special case.

To study the effect of linkage on the test for dise-
quilibrium, we estimated the type I error rate for the
test, H0: b = 0 vs. HA: b ( 0, for a marker locus that
is linked to a trait locus but in linkage equilibrium in
the population (scenario 1). We suppose that both the
trait and marker loci are diallelic and assume a log-
additive model at the trait locus. The disequilibrium
between the marker 1 allele (m1) and the trait allele
(g) is measured by the difference between the haplo-
type frequency and the product of the marker and trait
allele frequencies [d = Pr(m1g) – Pr(m1)Pr(g)]. We con-
sidered relatively common trait alleles with frequen-
cies of 10%, 30%, and 50%, two effect sizes (one
small and one large), and a disease prevalence of 10%.
The amount of disease in the population explained by
the gene is given by the population-attributable frac-
tion (PAF), 1 – Pr(affectedFnoncarrier)/prevalence.

The genetic odds ratio (GOR) of two (small effect)
yielded moderate PAFs of 7%–29%; the GOR of 20
(large effect) yielded high attributable fractions of
36%–84%. We let v take on the values 0, 0.05, 0.1,
0.2, and 0.5. Sibships of sizes three and four were
sampled under two different ascertainment events. In
the first, we sampled sibships having at least one case
and one control; in the second, we sampled those hav-
ing at least two cases and one control ( sibshipsn = 500
for each design). For all simulations, we consider a
nominal test size of 5%.

The estimated test size of the standard Score test was
higher under a larger genetic effect, under tighter linkage
between the marker and trait locus, and when sibships
were ascertained on the basis of having at least two cases
compared with having at least one (tables 1 and 2). In
sibships that were sampled with at least one affected and
one unaffected sibling, we found that the estimated sig-
nificance level slightly exceeded the nominal 5% value
for the GOR of 20 (maximum false-positive rate =
6.17%). However, for genes with small effects (GOR =
2), the estimated test size was generally within sampling
error of the 5% nominal rate. The false-positive rate
under linkage of a trait and marker locus was higher in
a sample of sibships having at least two affected siblings.
The type I error rate also appeared to increase with
sibship size. Still, for a gene having a small GOR, the
estimated false-positive rate in sibships of size four re-
mained !6%.

We repeated our simulations in SAS for the larger
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Table 3

Estimated Significance Level (%) of the Wald Test, for
the Nominal Rate of 5% (500 Replications of 500
Sibships of Size Four, Having at Least Two Affected and
One Unaffected Sibs)

Trait-Allele
Frequency Standard Robust

.10 7.6a 5.4

.30 6.2 4.0

.50 7.4a 5.2

NOTE.—Marker allele 1 frequency 50%; v = 0; popu-
lation disease prevalence = 10%; GOR = 20.

a Different from 5% (P = .02).

Table 4

Estimated Power (%) at a “Trait” Locus (500 Replications of 200 Sibships of Size Four)

GOR AND

TRAIT-ALLELE

FREQUENCY

ONE AFFECTED PLUS ONE

UNAFFECTED

TWO AFFECTED PLUS ONE

UNAFFECTED

Standard Wald Robust Wald SDT Standard Wald Robust Wald SDT

1.0:
.10 4.6 5.0 3.8 5.2 5.0 4.8
.30 6.0 6.6 5.8 3.6 3.6 3.8
.50 5.6 5.6 6.4 4.6 4.0 5.0

2.0:
.10 26.2 26.2 24.2 37.2 37.0 28.8
.30 52.0 51.4 44.8 63.2 62.6 53.6
.50 60.0 59.4 53.8 67.4 68.0 57.8

3.0:
.10 60.6 59.2 58.6 78.2 78.2 71.6
.30 90.2 90.0 87.2 97.4 97.8 94.0
.50 92.8 93.0 89.4 95.8 95.4 89.6

4.0:
.10 80.8 79.8 77.2 96.6 96.2 91.4
.30 98.0 98.4 97.6 99.6 99.6 98.2
.50 99.0 99.0 97.4 100.0 99.8 98.2

NOTE.—Marker allele 1 frequency equals trait-allele frequency; disequilibrium equals maximum pos-
sible disequilibrium; v = 0; population disease prevalence 10%; significance level 5%.

sibship size, at least two affected sibs per sibship, and a
GOR of 20. The estimated false-positive rate for the
Wald test, using the robust variance estimate, was within
sampling error of the 5% nominal value for all three
simulations (table 3). The estimated error rate using the
naı̈ve variance estimate from ordinary conditional lo-
gistic regression exceeded the nominal value for two of
the three scenarios.

Table 4 presents the power of the standard and robust
Wald tests and the SDT at an actual trait locus (scenario
2). We set the marker 1 allele frequency equal to the
trait allele frequency (q), fix v at zero, and the disequi-
librium parameter at its maximum possible value [ q#
(1-q) ]. This is equivalent to testing for a causal effect
of the trait allele, H0: b = bg = 0 vs. HA: b ( 0. For this
scenario, the standard Wald test is appropriate. We let
the GOR take on values from one (no genetic effect) to

four (large effect). Results showed that all three tests had
the correct size. The robust and standard Wald tests had
similar power and, in general, were more powerful than
the SDT.

In summary, the proposed analysis provides a robust
variance estimate for testing linkage disequilibrium in
sibships of arbitrary size, provided that the correct mean
structure is modeled. Since the expected marker allele
frequencies under the null hypothesis are computed
within families before summing over all families to ac-
cumulate evidence for linkage disequilibrium, the statis-
tic is unaffected by population stratification. The anal-
ysis can be easily implemented using standard statistical
software. The model is general and can be extended to
include environmental exposures, and exposure-expo-
sure interactions in addition to exposure-marker inter-
actions.

These results suggest that the robust variance esti-
mator correctly accounts for familial correlation in sib-
ships because of linkage, with no cost in power at the
true trait locus. However, the genetic effect needs to be
quite extreme before the standard Wald test leads to
incorrect inference, so that, for practical purposes, the
standard test may perform adequately.
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Appendix

First, we create two outcome variables (CASE and
TIME) to describe the disease status of the sibs. The
variable CASE is an indicator variable, which denotes
whether a subject is affected (CASE = 1 for diseased;
CASE = 0 for control). We code the TIME variable so
that all the cases have the same event time and the con-
trols have later censored times. We arbitrarily code
TIME = 1 for cases and TIME = 2 for controls. Second,
we create the explanatory variables. We let MARKER
denote the coding for the marker genotypes and SIBSHIP
the sibship (i = 1,…,I). In this illustration, we use the
log-additive coding for MARKER described earlier (0,
½, or 1). Finally, using these variables and the procedure
PHREG, we can run conditional logistic regression by
stratifying on sibship and using the option ties = discrete
in the model statement. The robust variance estimate for
the regression coefficient is then computed using the
score residuals and the SAS/IML software. The code is
based on the example provided in the SAS/STAT User’s
Guide, under the example for multiple failure outcomes
using the PHREG procedure, and is given as follows:

proc phreg data=family outest=est2;
model time*case(0)= marker / ties=discrete;
strata sibship;
output out=resids dfbeta=db1 / order=data;
id sibship;

proc means data=resids noprint;

by sibship;
var db1;
output out=out2 sum=db1;

proc iml;
use out2;
read all var{db1} into x;
MARKER=x� * x;
reset noname;
_TYPE_={�ROBVAR�};
print,�Estimated Covariance Matrix�,,

MARKER[colname=_TYPE_
rowname=_TYPE_ format=10.5];

create est1 from MARKER[colname=_TYPE_
rowname=_TYPE_];

append from MARKER[rowname=_TYPE_];
quit;
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